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Introduction  
One important aspect of the design of electric 
power systems is electromagnetic transient 
(EMT) analysis of cables.  Numerical methods 
such as the Finite Element method enable direct 
detailed modeling of field results for specific 
transient cases, but this is impractical for many 
purposes.  As an example, consider the results 
in Figure 1. 

 
Figure 1: B field at 0.02 and 0.2 ms after turning 
on DC current 

 
Similarly, one can display directions of fields, 
power density, current distributions, etc. in many 
plot formats.  One can also query values at 
specific points and produce tables and graphs of 
the time dependence, as in Figure 2. 

 
Figure 2: Current density at a point versus time 

 
All of these analyses have many uses, but are 
generally not useful for the purpose of studying 
the cable as component in a system or circuit. 
Instead, for those purposes it is normal to 
conduct a frequency dependent analysis of self- 
and mutual-impedances, and the constituent 
parameters (capacitance, inductance, 
resistance, conductance) for the conductors in a 
system.  Those results can be used very 
efficiently as needed for a multitude of specific 
transient cases within some circuit using 
dedicated software.   
 

Before using the results, in general one needs to 
verify their quality.  That means assessing the 
accuracy of a large number of individual 
impedance results relative to one’s needs.  
Furthermore, each set of results may take 
significant time to calculate.  
 
This paper is based on some of the research 
done to determine good default solver setup for 
CABLES – a new program created from parts of 
ELECTRO and OERSTED.  The goal was to 
provide a minimalistic interface dedicated to 
solving electrical parameters in sector cables.  
This paper is a case study for efficiently 
assessing the accuracy of the results for a 
specific four sector cable and sheath, and 
adjusting the solver conditions as necessary.  
The discussion focusses on how to effectively 
use options commonly available in FEM and 
related software to determine efficient and 
trusted protocols for analyzing models of a given 
type.  The model and results to compare with 
come from publications by Shafieipour et al.1, 2. 

Test Model Description 

The test model consists of a 4 sector cable 
surrounded by a sheath of inner radius 25 mm 
and outer radius 27 mm.  The 4 sectors can be 
understood by geometric subtraction of a “+” 
shape taken out of a circle. 

 
 

Figure 3: Test Model 
Conductor Numbers 

Figure 4: Sector 
Construction 

 

All conductors are assigned as copper.  For 
capacitance calculations this could be 
understood as a 4 conductor model, since the 
sectors will not influence anything beyond the 
sheath.  However, for the purpose of the total 
impedance one must account for the skin effect, 
hence the fields penetrating beyond the sheath.  
Thus the total problem is considered to be a 5 
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conductor impedance matrix with a 1 m 
ground/return path.   

       [𝑍] =

[
 
 
 
 
 
𝑍1,1 𝑍1,2 𝑍1,3 𝑍1,4 𝑍1,5

𝑍2,1 𝑍2,2 𝑍2,3 𝑍2,4 𝑍2,5

𝑍3,1 𝑍3,2 𝑍3,3 𝑍3,4 𝑍3,5

𝑍4,1 𝑍4,2 𝑍4,3 𝑍4,4 𝑍4,5

𝑍5,1 𝑍5,2 𝑍5,3 𝑍5,4 𝑍5,5]
 
 
 
 
 

 

However, one can exploit the symmetry of the 

model to note that (for example): the self-effects 

of the first 4 conductors are all the same; that 

the interaction between 1 and 2 is the same as 

between 1 and 3; etc.  Hence for this case the 

testing is reduced to the following 5 impedances. 

𝑍1 ≝ 𝑍1,1 = 𝑍2,2 = 𝑍3,3 = 𝑍4,4 

𝑍2 ≝ 𝑍1,2 = 𝑍1,4 = 𝑍2,1 = 𝑍2,3 

       = 𝑍3,2 = 𝑍3,4 = 𝑍4,1 = 𝑍4,3 

𝑍3 ≝ 𝑍1,3 = 𝑍2,4 = 𝑍3,1 = 𝑍2,4 

𝑍4 ≝ 𝑍1,5 = 𝑍2,5 = 𝑍3,5 = 𝑍4,5 

       = 𝑍5,1 = 𝑍5,2 = 𝑍5,3 = 𝑍5,4 

𝑍5 ≝ 𝑍5,5 

Numerical Methods to be Examined 

Figure 5 depicts how the geometry in discretized 

for analysis by two common methods: 

1) FEM (Finite Element Method) is the 

most widely known and used method 

due to its simplicity to implement.  The 

model geometry and immediately 

surrounding space are filled with a mesh 

used to compute the spatial distribution 

of some potential, such as voltage or the 

vector magnetic potential.  Specific 

results are obtained through appropriate 

relationships to that potential (e.g. 

electric field = -grad(voltage). 

2) BEM (Boundary Element Method, aka 

MoM, Method of Moments).  A surface 

mesh is used to compute the distribution 

of appropriate sources, such as the 

charge distribution in an electric 

problem.  Specific results are obtained 

through relationships to the source (e.g. 

electric field at a point is the sum of all 

charge divided by the square of the 

distance to each charge). 

 
Figure 5: Discretization for two solver methods 

 

Shafieipour et al. use the commercial software 

COMSOL to provide reference FEM results and 

compare these results with their own MoM 

implementation.  This paper will use the 

commercial software OERSTED3 which contains 

both methods.  Figure 6 shows their Z1 results 

beside typical OERSTED results for frequencies 

from 1 Hz to 1 MHz. 

 
Figure 6: Comparison of multiple Z1 calculations 

 

The results are all similar at low frequencies, but 

at high frequency the resistance (real part of Z) 

is a small fraction of the impedance and thus will 

require more stringent solver settings than the 

low frequency cases to get accurate results.  In 

particular, their MoM resistance results at 1 MHz 

are close to the OERSTED results, but quite 

discrepant from their COMSOL (FEM) results.  

Determining how to get better agreement at high 

frequency was not a focus of their work, but in 
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the following section we will discuss the value of 

working with more than one solver and of 

reconciling differences as needed. 

Note that the preceding OERSTED calculation 

does not include the capacitance.  The close 

agreement in imaginary results suggests that 

inductance is the main contribution to the 

imaginary part of Z for this cable. 

FEM / BEM Comparison 

As mentioned previously, FEM is the most 

common numerical method not because it is 

usually the best, but because it is the easiest for 

a software developer to produce. At the outset of 

new work, when developing protocols for solving 

models of a given type, it is worth running a 

comparison of multiple solver types (as 

available), especially a spatial mesh (differential 

calculus) type (FEM, FDTD) compared to a 

geometry mesh (integral calculus) type (BEM, 

FMM).  In this comparison the calculations are 

so distinct that one can consider them as 

independent verification.  The difference 

between results is then a good indicator of the 

calculation error.  Refining each solution until 

they agree within some required error margin 

will identify both which solver is better for the 

given model type, and also identify efficient 

solver settings.  Table 1 shows various cases 

tested using increasing numbers of FEM and 

BEM self-adaptive solution steps.  In the first 

step the model is solved with a default mesh.  

The error on each mesh element is estimated, 

then on the second step the elements with the 

highest error are subdivided.  The procedure 

continues for all subsequent steps.  The time 

taken is not linear.  Not only is the number of 

elements increased fractionally (typically 30%) 

on each step, but the number of calculations 

performed is not proportional to the number of 

elements.  More commonly it is proportional to 

the square or cube of the number of elements. 

 
Table 1:  FEM and BEM Results for R at 1 MHz 

 

The entire Z matrix was computed in the times 

shown above.  Since resistance at 1 MHz was 

previously the most difficult calculation, it was 

selected for as the standard result to determine 

the best solver conditions. Both solvers show a 

reasonably monotonic convergence toward a 

consistent answer as the number of steps 

increases.  Convergence is one of the common 

assessment criteria for a solver.  The resistance 

for 12 BEM self-adaptive steps was selected for 

the standard reference.   

Suppose the goal is to produce numbers 

accurate within 1%.  The results in Table 1 

suggest that one would achieve this with 2 

adaptive steps, taking 5 seconds using the BEM 

solver, but would require a few minutes or more 

(depending on how close to 1% was acceptable) 

to achieve with the FEM solver.  Hence, for the 

OERSTED tool the choice of BEM to solve with 

2 adaptive steps is clear. 

In fact, the two solvers appear to be converging 

to answers approximately 1% different.  That 

suggests some subtle systematic difference in 

how each method is solving, even though they 

are using the same model.  If better than 1% is 

required, it would be recommended to track 

down the source of that discrepancy. 

Wider Study of Results for a Fixed Number 

of Self-Adaptive Steps 

Having determined that the results were in close 

general agreement with published results based 
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on two independent codes, and that the BEM 

solver was clearly superior for speed of 

achieving a desired accuracy, a wider study was 

run on the time taken to solve for various 

number of BEM self-adaptive steps. In figures 7 

and 8 below the solution time is the time taken 

to solve all 7 frequencies and compute the entire 

Z matrix.  The discrepancy (error) is the relative 

difference between the value obtained with the 

given number of steps, and the value obtained 

with 12 adaptive steps.  The left-most point on 

each curve is one step, the next point is two 

steps, etc. 

 
Figure 7: Real part error versus total solution time 

 

 
Figure 8: Imag. part error versus total solution time 

 

All curves show a convergence towards a fixed 

value as more adaptive steps are taken.  Most 

curves would confirm the previous result that for 

1% accuracy it is sufficient to do 2 or 3 adaptive 

steps.  However, each figure shows one curve 

that stays near the 1% level for several steps, 

pushing the total solution time to several 

minutes to ensure better than 1% for all 

frequencies in this range. 

Examining the details for the solving process it is 

also seen that the higher frequencies take 

substantially longer to solve than the lower 

frequencies.  This is because once skin effects 

become comparable to the mesh size the solver 

creates more elements. 

 
Table 2:  Solution time for each frequency 

 

With each frequency potentially taking a 

significantly different time for the same number 

of steps, and with the number of steps required 

to achieve a given error varying substantially 

between the different frequencies, it is worth 

changing from a fixed number of steps to using 

an exit criteria that selects the number of steps 

as the solving proceeds. 

Results for Self-Adaptive Steps with an Exit 

Criteria Given 

Rather than running a fixed number of steps, an 

exit criteria is introduced so the solver can 

assess whether to stop after each adaptive step.  

This criteria will perform some global analysis on 

the solution, such as the average over all 

boundaries of the discrepancy between a 

computed boundary condition and the known 

value.  If the solution has achieved the exit 

criteria  

These results are shown in figures 9 and 10.  

Note that when the exit criteria causes the solver 

to perform 12 adaptive steps, the discrepancy 

computes as zero so no point appears on the 

curve. 
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Figure 9: Real part error versus total solution time 

 

 
Figure 10: Imag. part error versus total solution time 

 

In the results above, all curves are below 1% 

with a total solution time of less than a minute.  

This optimum case for beating 1% is an exit 

criteria of 0.004 and took 38 seconds. 

 
Figure 11: Total Solution time Versus Exit Criteria 

 

Final Proposal for CABLES 

One last observation is that about half the 

solution time for a given number of steps is 

taken on the previous steps.  The solution time 

curves are plotted logarithmically because each 

step takes approximately twice as long as the 

previous step.  Suppose one had a scenario 

where the first step took 1 second, the second 

step took 2 seconds, the third step took 4 

seconds, the fourth step took 8 seconds, etc.  In 

such a sequence approximately half the solution 

time is the final step and half is all the previous 

steps.  So, is it possible to know in advanced a 

sufficient final mesh and thus use a fixed mesh 

rather than self-adapting?  If so, one could 

potentially cut the solution time approximately in 

half. 

Clearly one must do at least one adaptive 

solution, but one could potential use its mesh for 

all other frequencies.  Since 1 MHz is the most 

demanding frequency, it was selected.  The 

results below show the error calculated when 

self-adapting to 0.004 for all frequencies on the 

left, and on the right it shows the errors when 

only 1 MHz is self-adapted, then its mesh is 

fixed and used for all other frequencies. 

 
Table 3:  Comparing Self-Adapt with a hybrid self-
adapt them manual algorithm 

 

The hybrid approach produces superior 

accuracy for all frequencies below 1 MHz as 

compared to self-adapting at each frequency.  

However, the time taken was the motivation for 

this method.  That also worked out as hoped.  
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The results on the left took a total of 38 seconds.  

For the results on the right, solving to 0.004 at 1 

MHz took 5 seconds, then solving all other 

frequencies took 13 seconds.  Thus, the total 

time for the hybrid algorithm was approximately 

18 seconds.  Thus, the algorithm performed a 

little better than halving the calculation time.   

Noting that the adaptive step took a significant 

fraction of the total time for the hybrid algorithm, 

and that this analysis is for a small sampling of 

frequencies over the range of interest, when 

producing a large set of results for a system 

simulation the hybrid algorithm may perform 

faster still relative to adapting every step 

because the relatively slow step will now one out 

of a much larger number. 

Summary 

This paper has presented benchmark and 

timing data used to optimize some aspects 

of how the OERSTED solver will be utilized 

in the new CABLES program.  Every solver 

has its own distinctive aspects for how to 

adapt a mesh, interpret an “exit criteria” 

number, etc.  Hence, the specific details and 

conclusions are only directly applicable to 

the OERSTED solver itself.  However, the 

reasoning and general approaches could be 

adapted to other numeric solvers when 

searching for default settings or protocols 

for a new project or model type. 
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